Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis.
نویسندگان
چکیده
Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta-analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta-analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P < 0.05). The differences may largely result from diverse responses of Ra to N addition among biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.
منابع مشابه
Agro- physiological responses of Carthamus tinctorius L. to sources of nitrogen fertilizer and organic manure
Excessive consumption of nitrogen (N) to enhance production, which may lead to environmental pollution. While sustainable production is threatened due to low soil fertility and organic matter. This study was carried out as a factorial experiment in the randomized complete block design and three replications at the research field of the University of Jiroft in 2018-2019. The present study invest...
متن کاملA meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies
• Numerous field studies have measured mycorrhizal dynamics under additions of nitrogen (N), phosphorus (P), or atmospheric CO2 to test the hypothesis that plants should invest in mycorrhizal fungi when soil nutrients are limiting. • Here meta-analyses were used to integrate nutrient responses across independent field-based studies. Responses were compared between ectoand arbuscular mycorrhizal...
متن کاملStimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.
Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-...
متن کاملCostimulation of soil glycosidase activity and soil respiration by nitrogen addition.
Unprecedented levels of nitrogen (N) have been deposited in ecosystems over the past century, which is expected to have cascading effects on microbially mediated soil respiration (SR). Extracellular enzymes play critical roles on the degradation of soil organic matter, and measurements of their activities are potentially useful indicators of SR. The links between soil extracellular enzymatic ac...
متن کاملEffects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland
Soil respiration (RS) represents a large terrestrial source of CO2 to the atmosphere. Global change drivers such as climate warming and nitrogen deposition are expected to alter the terrestrial carbon cycle with likely consequences for RS and its components, autotrophic (RA) and heterotrophic respiration (RH). Here we investigate the impacts of a 3°C soil warming treatment and a 50 kg ha(-1) y(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Global change biology
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2014